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Abstract
Objectives Investigate the biochemistry of in vivo healthy oral tissues through Raman spectroscopy.We aimed to characterize the
biochemical features of healthy condition in oral subsites (buccal mucosa, lip, tongue, and gingiva) of healthy subjects. More
specifically, we investigated Raman spectral characteristics and biochemical content of in vivo healthy tissues on Brazilian
population. This characterization can be used to better define normal tissue and improve the detection of oral premalignant
conditions in future studies.
Materials and methods For spectroscopic analysis a Raman spectrometer (Kaiser Optical Systems imaging spectrograph
Holospec, f / 1.8i-NIR) coupled with a laser 785 nm, 60 mW was used. Raman measurements were obtained by means of an
optical fiber (EMVision fiber optic probe) coupled between the laser and the spectrometer. Three spectra per site were acquired
from the lip, buccal mucosa, tongue, and gingiva of ten healthy volunteers. This resulted in 30 spectra per oral sub-site and in total
120 spectra.
Results We report detailed biochemical information on these subsites and their relative composition based on deconvolution
studies of their spectra. Finally, we also report classification efficiency of 61, 83, 41, and 93% for buccal, gingiva, lip, and tongue
respectively after applying multivariate statistical tools.
Conclusions We quantitated the contribution of various biochemicals in terms of percentage, and this will enable comparison not
only across anatomical sites but also across studies. Raman spectroscopy can rapidly probe tissue biochemistry of healthy oral
regions. Moreover, the study suggests the possibility of using Raman spectroscopy combined with signal processing and
multivariate analysis methods to differentiate the oral sites in healthy conditions and compare with pathological conditions in
future studies.
Clinical relevance The spectral characterization of the healthy condition of oral tissues by a noninvasive, label-free, and real-time
analytical techniques is important to create a spectral reference for future diagnosis of pathological conditions.
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Introduction

The search for new methods of oral lesion diagnosis has re-
sulted in the development of research aimed at detecting
changes in their initial phase. Many cases are diagnosed at a
later stage, making treatment more difficult and expensive,
compromising the prognosis. Histopathological examination,
performed through tissue analysis, obtained by excisional or
incisional biopsy, is still considered by many authors to be the
gold standard of diagnosis. In addition to histopathological
examination, additional tests may be required at the time of
the diagnostic process, to assist in the elaboration of diagnos-
tic hypotheses, including imaging (radiography, computed to-
mography, magnetic resonance imaging) and laboratory tests
(serological, biochemical, microbiological) among others [1].

Thus, other tools to aid in the diagnosis of various types of
lesions should be investigated. Considering the noninvasive
diagnostic techniques under development, Raman spectrosco-
py stands out. Raman spectroscopy, considered a noninvasive
analytical, can be very useful in the early diagnosis of various
lesions, as alterations in the molecular composition of patho-
logical tissues can be detected by the spectral reflections
[2–4]. The term Boptical biopsy^ is widely used because spec-
troscopy analyzes the tissue for its optical properties and can
provide additional information of the assessed tissue and thus
assist in the diagnostic process. Research has shown that
Raman spectroscopy is able to detect spectral tissue changes
and provide biochemical information in breast and skin
among others types of cancer [5].

Raman spectroscopy has been shown to quickly and reli-
ably identify oral malignant condition with approximately 90–
95% classification efficiency [3, 6–12]. These studies also
highlight the large biochemical difference between the cancer
and normal tissue/cells. However, as comparison moves to-
wards conditions preceding full malignancy, such as prema-
lignant [13–17], contralateral, and cancer field effects [11, 18],
the accuracy of tissue classification (i.e., ability to identify
tissue types) steadily decreases. This is expected, since as
one studies pre-cancer conditions, the biochemical differences
decrease and start to become more similar to healthy tissues.
These differences decrease further when taking into consider-
ation clinically/histopathologically undetectable pre-cancer
conditions, i.e., conditions where no morphological changes
can be observed, although tissue biochemistry is altered.
Undetectable conditions were previously studied in hamster
models [19, 20].

Thus, it becomes increasingly important to rigorously de-
fine controls and thresholds of their biochemical composition.
Sahu et al. [18] have previously reported spectral characteris-
tics of healthy oral sites. However, given the importance of
defining healthy, we believe that studies on healthy population
are relevant. Moreover, we report extensive data on biochem-
istry of each healthy sub-site. With this in mind, the present

Raman spectroscopy study was carried out in healthy patients
to rapidly demonstrate the biochemistry associated with
healthy oral tissues and differences in specific biochemical
components.

Materials and methods

Ethics statement

All procedures performed in studies involving human partic-
ipants were in accordance with the ethical standards of the
institutional and/or national research committee and with the
1964 Helsinki declaration and its later amendments or com-
parable ethical standards. The study was approved by
Research Ethics Committee of Universidade do Vale do
Paraíba (UNIVAP) via Plataforma Brasil—Brazil (number
1132237-2015).

Raman instrument

For spectroscopic analysis a Raman spectrometer (Kaiser
Optical Systems imaging spectrograph Holospec, f/1.8i-
NIR) coupled with a laser 785 nm, 60 mW was used.
Raman measurements were obtained by means of an optical
fiber (EMVision fiber optic probe) coupled between the laser
and the spectrometer. The Raman scattered light was collected
by the same fiber through dichroic mirror gold and finally
focused on the entrance aperture of the spectrometer through
a holographic notch filter. Laser excitation energy interacts
with the molecules in the tissue, promoting light scattering
from the vibrational modes. Raman scattered light was cap-
tured by the system and converted into spectra. The acquisi-
tion time was performed with an interaction of 40 s for each
spectrum (20 × 2 s). The signal was then collected by a CCD
detector (Andor-IDUs 420 series) whose quantum efficiency
is around 95%. The use of laser excitation in the infrared
region largely removes the intrinsic fluorescence of biological
tissues, facilitating the collection of Raman signals. This
whole system is connected to a computer that receives the
spectrometer information and turns them into spectra.

Subject information

Three spectra per site were acquired from the lip, buccal mu-
cosa, tongue, and gingiva (Fig. 6) of ten healthy volunteers.
This resulted in 30 spectra per oral sub-site and in total 120
spectra.

Data analysis

For mean spectrum, the spectra were corrected by subtracting
a polynomial of order five, and then vector was normalized.
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Savitsky-Golay filter (5th order, frame size 7) was used to
smooth the spectra. These spectra were then deconvoluted
using OriginPro 8.5 software based on peaks obtained by a
second derivatization. Raw spectra were first derivatized and
vector normalized for Principal Component Analysis (PCA),
preprocessing method to reduce the number of spectral param-
eters by generating a new set of independent features ordered
by the largest variability in our dataset, and subsequent em-
ployment of linear discriminant analysis (LDA) as a classifier.
LDA followed by leave-one-out cross-validation was first
employed to classify normal tissues from the buccal mucosa,
gingiva, lip, and tongue sites with few parameters. Then, ac-
curacy improvements were evaluated by considering two
types of spectrum normalization (by the area under the curve
or by its intensity maximum) and four other classifiers (K-
nearest neighbors, unpruned C4.5 decision tree or J48, ran-
dom forest, and multilayer perceptron). These improvements
were investigated by using only three principal components.
The spectral range 900–1800 cm−1 was used for all analyses.

Results and discussion

Characterization of tissues biochemical content

Figure 1 shows the mean spectra of the four oral subsites and
have features similar to those reported earlier [18, 21]. Amide
I, amide III, and lipid bands (1443, 1745) are more prominent
in the buccal and lip compared to the gingiva and tongue.
Gingiva has a sharp phosphate peak (960 cm−1) indicative of

contribution from teeth and bone. Anatomically, the buccal
and lip have more lipids and matches the features observed
in mean spectra (Fig. 2).

To further explore these differences, spectral deconvolution
and curve fitting were performed. It is well known that the
mean spectrum is a combination of signals from several bio-
chemical components of the tissue. To delineate contribution
from each component, the spectrum can be deconvoluted—
that is, contribution of each signal can be separated. To
achieve this, second derivative of the spectrum is obtained,
and peaks apparent in the modified spectrum are noted.
Then, in a deconvolution software (OriginPro in this case),
the information is provided. The software uses the information
to fit Gaussian curves to each peak. If the fitting is correct (χ2

values are in the range of 10−5 or less, and R2 values are ~ = 1),
areas under these fitted curve can be considered as contribu-
tion of the biochemical component associated with the peak to
the spectrum. By calculating the percentage area of each peak,
contribution of all the biochemical to the sample spectrum can
be acquired. These can then be compared across samples to
derive information on chemical variation of each sample.

Figure 3 shows the deconvolution of different spectral re-
gions for each subsite, while Table 1 lists all the biochemical
features and their contribution in terms of area. The percent
contribution of each chemical was calculated by dividing the
area under the peak for that chemical by the total areas of all
biochemical in that mean spectrum. While it would be more
convenient to have a single column listing the vibrations, sep-
arate columns have been used since the peaks vary for each
sub-site. From Table 1, it can be seen that buccal mucosa

Fig. 1 Sites of spectra
acquisition. a Lip, b gingiva, c
tongue, d buccal mucosa

Clin Oral Invest (2019) 23:3021–3031 3023



Fig. 2 Mean spectra of the
subsites. Different features can be
observed along almost all spectral
regions in the gingiva. The lip and
buccal have the highest spectral
similarity

Fig. 3 Deconvolution of mean
spectra of oral subsites. Red
curves show measured spectra
bands and green curves are the
deconvolved Gaussian bands to
fit measured spectra and extract
tissue biochemical content
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composition is dominated by collagen (17%), lipids (15.5%),
proteins/lipids (34%), and amino acids (4%). Phosphate
(28.5%) and carbohydrate (16.5%) are major components of
the gingiva, along with lipids (8%), carbonate (6%), and pro-
teins (3.5%). The lip is rich in proteins and lipids, exhibiting
24%, 17.5%, and 31% proteins, lipids, and protein/lipid, re-
spectively. Twenty-seven percent of the tongue composition is
lipid, while collagen and proteins contribute 5 and 7%, respec-
tively (Fig. 2). Histologically, the buccal and lip mucosa have
the same tissue pattern. Since classification methods (to auto-
matically identify tissue types) use histology results for their
optimization, these results influence spectra grouping. Sahu
et.al [18] have found similar features—high lipids and pro-
teins in the buccal, with similar features in others. Importantly,
they found specific collagen contribution in the tongue, which
is seen in this study too. Bergholt et.al [21] also reported
similar results. They used fitting of basis spectra, and found
higher collagen in the lip and tongue, which is the case with
our study. They found high-mineral content in the gingiva and
high-lipid content in the buccal, which are also seen in this
study. The mineral content found in the gingiva is due to the
spectral contribution of the teeth and bone covered by the
tissue. Due to the Raman penetration depth, the signal is com-
posed also by the phosphate signal from mineralized tissues.

PC-LDA classification

It is well known that rapid identification of diseases based on
multiple spectral characteristics can be achieved using multi-
variate statistical analysis. For comparison with previous stud-
ies, classification efficiency of anatomical subsites can be
checked against each other to get an idea of possible differ-
ences in populations studied.With this in mind, we first used a
standard method for classification in Raman spectroscopy:
PC-LDA, which consists of using Principal Component
Analysis (PCA) followed by linear discriminant analysis
(LDA) [22–27]. PCA was performed in order to reduce the
number of parameters to be used for classification by using the
ones with most of the variability in the dataset. PCA generated
parameters, i.e., principal components (PCs) represent data
variation; with first PCs containing the maximum variation.
By plotting the PCs in the Cartesian coordinate system, data
variability can be visualized. Plot of PC2 and PC4 (Fig. 4A)
shows a clear cluster for the gingiva and tongue, whereas the
buccal and lip overlap. It is clear that PC2 results in the sep-
aration. Plot of PC2 (Fig. 4B) suggests that the bands centered
at 960 cm−1 (phosphate), 1291 cm−1 (protein amide III),
1429 cm−1 (deoxyribose/lipids), and 1643 cm−1 (amide I)
are the discriminating biochemicals. The clinical relevance
of applying multivariate statistical analysis for spectral studies
is the possibility to rapidly and clearly detect the chemical
differences of each healthy tissue, and compare to another
spectra of a tissue where there is some kind of doubt in the
condition. In the present study, the gingiva spectra showed the
high contribution of phosphate band and, if the raw spectra
were isolated and analyzed, a mistake in the identification can
occur. However, after PCA analysis, a clear cluster classified
the gingiva and tongue (Fig. 4A).

PCA can give an idea regarding the trend of data separa-
tion, but is limited by the number of dimensions that can be
plotted at a time. This can be circumvented by PC-LDA,

Fig. 4 PCAA—scatter plot of PC
2 × PC 4. B loading plot PC 2

Table 2 Rate of classified tissues using PC-LDA with leave-one-out
cross-validation. Correct classifications occur in the main diagonal of
the table

Classified as Buccal Gingiva Lip Tongue

Buccal 61.29 0.00 35.48 3.23

Gingiva 3.33 83.33 6.67 6.67

Lip 25.00 0.00 40.63 34.38

Tongue 0.00 0.00 6.67 93.33

3026 Clin Oral Invest (2019) 23:3021–3031
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wherein important PCs are used as an input for LDA to be
arranged in n-dimensional space so as to achieve maximum
intergroup variability and minimum intragroup variability.
The results of PC-LDA is followed by leave-one-out cross
validation (LOOCV), which recreates the model by leaving
one spectrum out each time.

The results of PC-LDA employing LOOCV as cross-
validation method are shown in Table 2. PC-LDA LOOCV
table shows 93% and 83% classification for the lip and gingi-
va respectively. The buccal mucosa shows 35% misclassifica-
tion with the lip, while the lip shows 34 and 25% misclassifi-
cation with the tongue and buccal respectively. Our data
matches closely with classification results obtained by
Bergholt et al. [21] despite the fact that they used eight sub-
sites for analysis, while we used only four. With respect to the
study by Sahu et al. [18], our and Bergholt et al. [21] classifi-
cation efficiency was low for buccal (Sahu et.al [18] achieved
a classification efficiency of 84%), but high for tongue (Sahu
et.al [18] achieved classification efficiency of 81%). All three
studies achieved approximately 40% classification for the lip.
This further emphasizes the need for robustly defining the
normal tissues spectra.

Attenuated total reflection Fourier-transform infrared
spectroscopy (ATR-FTIR) study of enamel to monitor

enamel erosion caused by medicaments used in the treat-
ment of respiratory diseases was previously reported
(Gomes et al. 2018). The authors combined a spectral
analysis with multivariate analysis by PC-LDA to detect
changes in enamel composition caused by different medi-
caments routinely used. Multivariate statistical analysis
showed that the different medicaments were classified
with efficiency from control, further highlighting the abil-
ity of ATR-FTIR to identify the degree of erosion. Thus,
we can conclude that multivariate statistical analysis is a
powerful tool to help in clinical diagnostic situations in
both hard and soft tissues of the oral cavity.

In the present study, multivariate analysis PC-LDA allows
training of statistical models that can be used to detect an
incipient degree of tissue alteration by pathology of future
spectrum. This will enable the clinician to obtain spectrum
from patient oral tissues, immediately get valuable informa-
tion of the tissue in molecular level, and have an idea of the
extent of pathology stage. The dentist can use this rapid meth-
od for early diagnosis and also to monitor patient tissue con-
ditions post-treatments such as surgeries, radiotherapy, or
chemotherapy.

Accuracy improvement by other normalization
and classification methods

In order to improve classification accuracy, other pre- and
post-processing techniques were evaluated and compared to
each other and to PC-LDA. This comparison was performed
by using the full spectrum or the first three PCs after two types
of normalization techniques, i.e., by the area under the curve
or by its intensity maximum and four classifiers (K-nearest
neighbors, unpruned C4.5 decision tree or J48, random forest,
and multilayer perceptron).For the first and second types of
normalization, these components account for 60.83% and

Fig. 5 PCA scores plot for
Raman spectra a normalized by
the area under the spectrum and b
normalized by the intensity
maximum. A cluster for the
gingiva and tongue can be
visualized in both plots. The lip
group is the most heterogeneous,
and a better cluster of the buccal
group can be visualized in b

Table 4 Overall accuracy of the different classifiers. Random forest and
multilayer perceptron classifiers allow highest accuracies

Overall rate of correctly classified tissues

KNN J48 RF MLP

RSNAS 76.4% 68.3% 81.3% 79.7%

RSNAS (PCA) 70.7% 65.9% 69.1% 76.4%

RSNIM 79.7% 61.0% 80.5% 79.7%

RSNIM (PCA) 75.6% 75.6% 77.2% 74.0%
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65.04% of the variance, respectively. Even though it may not
have a high percentage of variance, it was enough to describe
the main features of spectra of each anatomical site (Fig. 4 and
Table 3) for classification purposes. In addition, using only
three parameters allows avoidance of overfitting and a much
faster classification.

The tissue classification using full spectrum led to very
similar accuracies between the two normalization methods
(Table 3). This happened for all classifiers and tissue types,
except by the lip group when using KNN (K-nearest
neighbors) and the buccal group for J48 classifier. However,
when using only PCA parameters, RSNAS leads to a better
classification for the lip through J48 and multilayer perceptron
(MLP). On the other hand, RSNIM provides significantly
higher accuracy for the buccal and tongue when using J48,
and for the buccal and lip when using random forest (RF).

When comparing classification results using full spectrum
or PCA parameters, a limitation in accuracy was observed for
RSNAS, especially for the buccal and lip groups. For both
types of normalized spectra and all classifiers, a lower accu-
racy was observed for the lip, which suggests features for
correct classification of this type of tissue can be found in
other PCs. In addition, these components may also contain
important characteristics of the buccal group, in the case of
RSNAS. Despite these restrictions, overall J48 classification
using RSNIMwas much better than using RSNAS.Moreover,
the classification using RSNIM and RF achieved comparable
results between full spectrum and PCA parameters (Fig. 5 and
Tables 3 and 4). This indicates this combination of normali-
zation and classification method may be the best for overall
tissue discrimination results.

In terms of overall accuracy (number of correctly classified
tissues/total number of tissues), MLP was the classifier with
most stable results after simplifying the model using three PCs
instead of the full spectrum. Also, models using RSNIM led to
the most stable results among classifiers (Fig. 6). Finally, best
results were achieved by random forest classifier with both
highest overall accuracy and lip-identification accuracy. This

overall accuracy was 8.1% higher than our results with PC-
LDA and 7.8%higher than the one reported by Sahu et al.[22],
suggesting our proposed classification method could improve
assessment of oral normal tissues.

Any analysis to identify abnormal condition begins with
rigorously defining the normal features. This logic is followed
in pathology, blood, urine, and stool analysis; microbiological
tests; physical parameters such as heart rate, respiratory rate,
pulse rate, and so on, encompassing every aspect of medicine
and disease. The same is imperative in spectroscopic diagno-
sis, and is the first step to make the technique acceptable in
clinics. Tremendous amount of data is available on spectro-
scopic differences between normal and abnormal, but the lit-
erature on defining normal is comparatively scarce. In this
study, we endeavor to contribute to characterization of healthy
oral sub-sites. The final aim is to have a comprehensive data-
base of spectra from different populations living in different
countries, having varied range of food and oral hygiene habits.
This would enable to define spectra of healthy tissues correct-
ly and adapt multivariate analysis to encompass worldwide
variations. This is of particular importance when assessing
for pre-cancer changes. While cancer presents substantial bio-
chemical change from normal, the same may not be true for
early cancer biochemistry. This has been amply demonstrated
by study of tobacco users, premalignant conditions in human
subjects, and conditions preceding clinically detectable cancer
in hamster buccal pouch model. Improper understanding of
healthy spectral characteristics will invariably lead to high
false-positives or negatives, undermining the application of
this technology.

Conclusions

The study demonstrates that Raman spectroscopy can rapidly
analyze the biochemistry of healthy oral tissues. Moreover,
the study suggests the possibility of using Raman spectrosco-
py combined with signal processing and multivariate analysis

Fig. 6 ROC curves for classification of different anatomical sites when
using a three first PCA parameters of RSNIM and b RSNIM parameters
and random forest classifier. The area under ROC curves is very similar

for each tissue type in both cases, suggesting the three first principal
components are suitable to describe 515 spectral parameters without
significant losses in accuracy
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to identify and differentiate the oral sites in healthy conditions.
Subsequently, these differences can be used to improve their
contrast against pathological conditions. Further studies with
larger sample sizes and different pathologies may help estab-
lish this technique as a routine tool in dental clinics.
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