Please use this identifier to cite or link to this item: http://repositorio.unitau.br/jspui/handle/20.500.11874/2004
Full metadata record
DC FieldValueLanguage
dc.contributor.authorde Oliveira A.M.pt_BR
dc.contributor.authorBoruszewski W.pt_BR
dc.date.accessioned2019-09-12T16:32:42Z-
dc.date.available2019-09-12T16:32:42Z-
dc.date.issued1992-
dc.citation.volume27pt_BR
dc.citation.issue6pt_BR
dc.citation.spage1015-
dc.citation.epage1024-
dc.identifier.doi10.1016/0020-7462(92)90052-9pt_BR
dc.identifier.issn207462-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-0026946977&doi=10.1016%2f0020-7462%2892%2990052-9&partnerID=40&md5=b8d2824793c8d468e8d091ebc7195ff5-
dc.identifier.urihttp://repositorio.unitau.br/jspui/handle/20.500.11874/2004-
dc.description.abstractFor non-conservative mechanical systems (non-potential operators), classical energetic variational principles do not hold true. In the present paper, a generalized variational principle, valid for non-linear and non-conservative systems, is deduced by means of "potentializable" operators. A systematic inclusion or boundary conditions in problems dealing with such operators is proposed and examples from continuum mechanics are presented. © 1992.en
dc.description.provenanceMade available in DSpace on 2019-09-12T16:32:42Z (GMT). No. of bitstreams: 0 Previous issue date: 1992en
dc.languageInglêspt_BR
dc.relation.ispartofInternational Journal of Non-Linear Mechanics-
dc.rightsAcesso Restritopt_BR
dc.sourceScopuspt_BR
dc.subject.otherBeams and girdersen
dc.subject.otherBoundary value problemsen
dc.subject.otherContinuum mechanicsen
dc.subject.otherDifferential equationsen
dc.subject.otherMathematical modelsen
dc.subject.otherMechanicsen
dc.subject.otherStrainen
dc.subject.otherStressesen
dc.subject.otherBeam strainen
dc.subject.otherCanonical equilibrium equationsen
dc.subject.otherInternal loadsen
dc.subject.otherLaminar boundary layeren
dc.subject.otherNon-conservative systemsen
dc.subject.otherNon-linear equationsen
dc.subject.otherPotentializable operatorsen
dc.subject.otherVariational principlesen
dc.subject.otherMathematical techniquesen
dc.titleA generalized variational principle for potentializable operatorsen
dc.typeArtigo de Periódicopt_BR
dc.description.affiliationde Oliveira, A.M., Departamento de Estruturas, ITA, CTA, Sao Jose dos Campos, 12225 SP, Brazil, Departamento de Matemática, Universidade de Taubaté, Taubaté, 12100 SP, Brazil-
dc.description.affiliationBoruszewski, W., Divisão de Mecânica, Institute de Pesquisas Espaciais, C.P. 515, Sao Jose dos Campos, 12201 SP, Brazil-
dc.identifier.scopus2-s2.0-0026946977-
dc.contributor.scopus10840360200pt_BR
dc.contributor.scopus6506193769pt_BR
Appears in Collections:Artigos de Periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.