Please use this identifier to cite or link to this item: http://repositorio.unitau.br/jspui/handle/20.500.11874/2054
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRamos M.A.C.pt_BR
dc.contributor.authorLeme B.C.C.pt_BR
dc.contributor.authorDe Almeida L.F.pt_BR
dc.contributor.authorBizarria F.C.P.pt_BR
dc.contributor.authorBizarria J.W.P.pt_BR
dc.date.accessioned2019-09-12T16:32:47Z-
dc.date.available2019-09-12T16:32:47Z-
dc.date.issued2017-
dc.citation.volume2017-Octoberpt_BR
dc.citation.spage4-
dc.citation.epage8-
dc.identifier.doi10.23919/ICCAS.2017.8204414pt_BR
dc.identifier.isbn9788993215137-
dc.identifier.issn15987833-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85044450888&doi=10.23919%2fICCAS.2017.8204414&partnerID=40&md5=c23e330ab363353d6adb226989d591ec-
dc.identifier.urihttp://repositorio.unitau.br/jspui/handle/20.500.11874/2054-
dc.description.abstractThis work presents the implementation of a method for classification of wear particle contaminant present in industrial oil by using image processing and neural networks. It is based on morphological data obtained from a computer vision system and employs Self-Organizing Maps to classify particles' features intro different wear debris groups. The dataset used for training the neural network and further validation of the results was gathered using reports provided by a specialist company in wear particle analysis. The objective is to develop a system feasible for most industries to turn the process of particle classification more autonomous and faster. The results demonstrate that our proposed system could classify particles considering their shape in a reliable and autonomous way. © 2017 Institute of Control, Robotics and Systems - ICROS.en
dc.description.provenanceMade available in DSpace on 2019-09-12T16:32:47Z (GMT). No. of bitstreams: 0 Previous issue date: 2017en
dc.languageInglêspt_BR
dc.publisherIEEE Computer Society-
dc.relation.ispartofInternational Conference on Control, Automation and Systems-
dc.relation.haspart17th International Conference on Control, Automation and Systems, ICCAS 2017-
dc.rightsAcesso Restritopt_BR
dc.sourceScopuspt_BR
dc.subject.otherComputer Visionen
dc.subject.otherIndustrial Oilen
dc.subject.otherKohonenen
dc.subject.otherNeural Networksen
dc.subject.otherWear Particle Analysisen
dc.subject.otherConformal mappingen
dc.subject.otherNeural networksen
dc.subject.otherSelf organizing mapsen
dc.subject.otherComputer vision systemen
dc.subject.otherIndustrial Oilen
dc.subject.otherKohonenen
dc.subject.otherMorphological dataen
dc.subject.otherParticle classificationen
dc.subject.otherWear debrisen
dc.subject.otherWear particle analysisen
dc.subject.otherWear particlesen
dc.subject.otherComputer visionen
dc.titleClustering wear particle using computer vision and self-organizing mapsen
dc.typeTrabalho apresentado em eventopt_BR
dc.description.affiliationRamos, M.A.C., Department of Mechanical Engineering, University of Taubate, Taubate, Brazil-
dc.description.affiliationLeme, B.C.C., Department of Mechanical Engineering, University of Taubate, Taubate, Brazil-
dc.description.affiliationDe Almeida, L.F., Department of Informatics, University of Taubate, Taubate, Brazil-
dc.description.affiliationBizarria, F.C.P., Department of Mechanical Engineering, University of Taubate, Taubate, Brazil-
dc.description.affiliationBizarria, J.W.P., Department of Informatics, University of Taubate, Taubate, Brazil-
dc.identifier.scopus2-s2.0-85044450888-
dc.contributor.scopus57189600855pt_BR
dc.contributor.scopus57201367481pt_BR
dc.contributor.scopus37024096300pt_BR
dc.contributor.scopus36997113200pt_BR
dc.contributor.scopus36997124100pt_BR
Appears in Collections:Trabalhos Apresentados em Eventos
Artigos de Periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.