Please use this identifier to cite or link to this item:
http://repositorio.unitau.br/jspui/handle/20.500.11874/2452
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Giacaglia, Giorgio Eugenio Oscare | pt_BR |
dc.contributor.author | Schutz B.E. | pt_BR |
dc.date.accessioned | 2019-09-12T16:53:18Z | - |
dc.date.available | 2019-09-12T16:53:18Z | - |
dc.date.issued | 2008 | - |
dc.citation.volume | 130 PART 2 | pt_BR |
dc.citation.spage | 1557 | - |
dc.citation.epage | 1569 | - |
dc.identifier.isbn | 9780877035442 | - |
dc.identifier.issn | 653438 | - |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-60349128403&partnerID=40&md5=f045856d6066635df82b3f36ab4146a3 | - |
dc.identifier.uri | http://repositorio.unitau.br/jspui/handle/20.500.11874/2452 | - |
dc.description.abstract | The well known linearized theory of satellite motion given by Kaula in 1966 has proven to be very useful in categorizing the nature of gravitational perturbations associated with the mass distribution of the planet that defines the satellite orbits. The secular and periodic perturbations produced by zonal, tesseral and sectorial gravity coefficients can be readily identified. In fact, the expressions for secular variations and amplitude of some periodic variations are well represented by the theory. Nevertheless, potential problems exist when the eccentricity is small, for example, because of the use of classical orbit elements in Kaula's theory. This paper examines an alternate theory, based on nonsingular elements for small eccentricity, which is the typical case for most Earth observing and geodetic satellites. | en |
dc.description.provenance | Made available in DSpace on 2019-09-12T16:53:18Z (GMT). No. of bitstreams: 0 Previous issue date: 2008 | en |
dc.language | Inglês | pt_BR |
dc.relation.ispartof | Advances in the Astronautical Sciences | - |
dc.rights | Acesso Restrito | pt_BR |
dc.source | Scopus | pt_BR |
dc.subject.other | Earth observing | en |
dc.subject.other | Gravitational perturbations | en |
dc.subject.other | Gravity coefficients | en |
dc.subject.other | Linear perturbations | en |
dc.subject.other | Linearized theories | en |
dc.subject.other | Mass distributions | en |
dc.subject.other | Nonsingular elements | en |
dc.subject.other | Orbit elements | en |
dc.subject.other | Periodic perturbations | en |
dc.subject.other | Periodic variations | en |
dc.subject.other | Potential problems | en |
dc.subject.other | Satellite motions | en |
dc.subject.other | Satellite orbits | en |
dc.subject.other | Secular variations | en |
dc.subject.other | Geodetic satellites | en |
dc.subject.other | Gravitation | en |
dc.subject.other | Linearization | en |
dc.subject.other | Mechanics | en |
dc.subject.other | Orbits | en |
dc.subject.other | Programming theory | en |
dc.subject.other | Space flight | en |
dc.subject.other | Satellites | en |
dc.title | Small eccentricity satellite orbits: Linear perturbations | en |
dc.type | Trabalho apresentado em evento | pt_BR |
dc.description.affiliation | Giacaglia, G.E.O., Department of Mechanical Engineering, University of Taubaté, Taubaté, SP, 12060-440, Brazil | - |
dc.description.affiliation | Schutz, B.E., Dept. of Aerospace Engineering and Engineering Mechanics, Center for Spce Research, University of Texas at Austin, Austin, TX 78712-1085, United States | - |
dc.identifier.scopus | 2-s2.0-60349128403 | - |
dc.contributor.scopus | 55175945800 | pt_BR |
dc.contributor.scopus | 7006936301 | pt_BR |
Appears in Collections: | Trabalhos Apresentados em Eventos Artigos de Periódicos |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.