Please use this identifier to cite or link to this item: http://repositorio.unitau.br/jspui/handle/20.500.11874/2649
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGouvea, Erica J. C.pt_BR
dc.contributor.authorRegis, Rommel G.pt_BR
dc.contributor.authorSoterroni, Aline C.pt_BR
dc.contributor.authorScarabello, Marluce C.pt_BR
dc.contributor.authorRamos, Fernando M.pt_BR
dc.date.accessioned2019-09-12T16:53:35Z-
dc.date.available2019-09-12T16:53:35Z-
dc.date.issued2016-
dc.citation.volume251pt_BR
dc.citation.issue3pt_BR
dc.citation.spage727-
dc.citation.epage738-
dc.identifier.doi10.1016/j.ejor.2016.01.001pt_BR
dc.identifier.issn0377-2217-
dc.identifier.issn1872-6860-
dc.identifier.urihttp://repositorio.unitau.br/jspui/handle/20.500.11874/2649-
dc.description.abstractThe q-gradient vector is a generalization of the gradient vector based on the q-derivative. We present two global optimization methods that do not require ordinary derivatives: a q-analog of the Steepest Descent method called the q-G method and a q-analog of the Conjugate Gradient method called the q-CG method. Both q-G and q-CG are reduced to their classical versions when q equals 1. These methods are implemented in such a way that the search process gradually shifts from global in the beginning to almost local search in the end. Moreover, Gaussian perturbations are used in some iterations to guarantee the convergence of the methods to the global minimum in a probabilistic sense. We compare q-G and q-CG with their classical versions and with other methods, including CMA-ES, a variant of Controlled Random Search, and an interior point method that uses finite-difference derivatives, on 27 well-known test problems. In general, the q-G and q-CG methods are very promising and competitive, especially when applied to multimodal problems. (C) 2016 Elsevier B.V. All rights reserved.en
dc.description.provenanceMade available in DSpace on 2019-09-12T16:53:35Z (GMT). No. of bitstreams: 0 Previous issue date: 2016en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)pt_BR
dc.languageInglêspt_BR
dc.publisherElsevier Science Bv-
dc.publisher.countryHolandapt_BR
dc.relation.ispartofEuropean Journal of Operational Research-
dc.rightsEm verificaçãopt_BR
dc.sourceWeb of Sciencept_BR
dc.subject.otherMetaheuristicsen
dc.subject.otherGlobal Optimizationen
dc.subject.otherQ-Calculusen
dc.subject.otherQ-Gradient Vectoren
dc.subject.otherConvergenceen
dc.subject.otherFunction Minimizationen
dc.subject.otherSearch Algorithmen
dc.subject.otherScatter Searchen
dc.subject.otherTabu Searchen
dc.titleGlobal optimization using q-gradientsen
dc.typeArtigo de Periódicopt_BR
dc.contributor.orcidRegis, Rommel https://orcid.org/0000-0002-3468-5146pt_BR
dc.identifier.wosWOS:000371652000004-
dc.description.affiliation[Gouvea, Erica J. C.; Soterroni, Aline C.; Scarabello, Marluce C.; Ramos, Fernando M.] Natl Inst Space Res INPE, Lab Comp & Appl Math, Sao Jose Dos Campos, SP, Brazil-
dc.description.affiliation[Gouvea, Erica J. C.] Universidade de Taubaté (Unitau), Exact Sci Inst-
dc.description.affiliation[Regis, Rommel G.] St Josephs Univ, Dept Math, Philadelphia, PA 19131 USA-
dc.subject.wosareaManagementen
dc.subject.wosareaOperations Research & Management Scienceen
dc.subject.researchareaBusiness & Economicsen
dc.subject.researchareaOperations Research & Management Scienceen
Appears in Collections:Artigos de Periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.