Please use this identifier to cite or link to this item: http://repositorio.unitau.br/jspui/handle/20.500.11874/2894
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlmeida, Luis Fernando dept_BR
dc.contributor.authorBizarria, José Walter Parquetpt_BR
dc.contributor.authorBizarria, Francisco Carlos Parquetpt_BR
dc.contributor.authorMathias, Mauro Hugopt_BR
dc.date.accessioned2019-09-12T16:56:49Z-
dc.date.available2019-09-12T16:56:49Z-
dc.date.issued2015-
dc.citation.volume21pt_BR
dc.citation.issue16pt_BR
dc.citation.spage3456-
dc.citation.epage3464-
dc.identifier.doi10.1177/1077546314524260pt_BR
dc.identifier.issn1077-5463-
dc.identifier.issn1741-2986-
dc.identifier.urihttp://repositorio.unitau.br/jspui/handle/20.500.11874/2894-
dc.description.abstractRolling element bearings are critical mechanical components in rotating machinery and fault detection in the early stages of damage is important to prevent their malfunctioning and failure. Vibration monitoring is the most widely used and cost-effective monitoring technique to detect, locate and distinguish faults in rolling element bearings. This paper purposes single hidden layer architecture for fault diagnosis of rolling element bearings. The particular of this proposed architecture is its ability to generalize for solving both basic classification and fault identification. The network uses the features of time-domain vibration signals with normal and defective bearings. The Multi Layer Perceptron (MLP) was trained and tested with a set of experimental data obtained from previous experiments developed by FEG, CWRU and RANDALL laboratories. The results show the effectiveness of the MLP to diagnose the machine condition for the various data used.en
dc.description.provenanceMade available in DSpace on 2019-09-12T16:56:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2015en
dc.languageInglêspt_BR
dc.publisherSage Publications Ltd-
dc.publisher.countryInglaterrapt_BR
dc.relation.ispartofJournal of Vibration and Control-
dc.rightsEm verificaçãopt_BR
dc.sourceWeb of Sciencept_BR
dc.subject.otherArtificial Neural Networken
dc.subject.otherMulti Layer Perceptronen
dc.subject.otherCondition-Based Monitoringen
dc.subject.otherVibration Monitoringen
dc.subject.otherArtificial Neural-Networken
dc.subject.otherFault-Diagnosisen
dc.subject.otherGenetic Algorithmsen
dc.subject.otherVibrationen
dc.subject.otherClassificationen
dc.subject.otherMachineryen
dc.subject.otherSpectrumen
dc.subject.otherEmden
dc.titleCondition-based monitoring system for rolling element bearing using a generic multi-layer perceptronen
dc.typeArtigo de Periódicopt_BR
dc.contributor.orcidMathias, Mauro Hugo https://orcid.org/0000-0001-8593-1231pt_BR
dc.contributor.orcidParquet Bizarria, Francisco Carlos https://orcid.org/0000-0003-2329-0883pt_BR
dc.contributor.researcheridMathias, Mauro Hugo/G-2851-2012pt_BR
dc.identifier.wosWOS:000365615000025-
dc.description.affiliation[de Almeida, Luis F.; Bizarria, Jose W. P.] Universidade de Taubaté (Unitau), Dept Informat, BR-12010000 Taubate, SP, Brazil-
dc.description.affiliation[Bizarria, Francisco C. P.] Universidade de Taubaté (Unitau), Dept Elect Engn, BR-12010000 Taubate, SP, Brazil-
dc.description.affiliation[Mathias, Mauro H.] Sao Paulo State Univ, Fac Engn, Sao Paulo, Brazil-
dc.subject.wosareaAcousticsen
dc.subject.wosareaEngineering, Mechanicalen
dc.subject.wosareaMechanicsen
dc.subject.researchareaAcousticsen
dc.subject.researchareaEngineeringen
dc.subject.researchareaMechanicsen
Appears in Collections:Artigos de Periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.