Please use this identifier to cite or link to this item:
http://repositorio.unitau.br/jspui/handle/20.500.11874/3081
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ramos, Marcos Alessandro da Cruz | pt_BR |
dc.contributor.author | Leme, Bruno Cesar Caixeta | pt_BR |
dc.contributor.author | Almeida, Luis Fernando de | pt_BR |
dc.contributor.author | Bizarria, Francisco Carlos Parquet | pt_BR |
dc.contributor.author | Bizarria, José Walter Parquet | pt_BR |
dc.date.accessioned | 2019-09-12T16:57:08Z | - |
dc.date.available | 2019-09-12T16:57:08Z | - |
dc.date.issued | 2017 | - |
dc.citation.spage | 4 | - |
dc.citation.epage | 8 | - |
dc.identifier.isbn | 978-89-93215-14-4 | - |
dc.identifier.issn | 2093-7121 | - |
dc.identifier.uri | http://repositorio.unitau.br/jspui/handle/20.500.11874/3081 | - |
dc.description.abstract | This work presents the implementation of a method for classification of wear particle contaminant present in industrial oil by using image processing and neural networks. It is based on morphological data obtained from a computer vision system and employs Self-Organizing Maps to classify particles' features intro different wear debris groups. The dataset used for training the neural network and further validation of the results was gathered using reports provided by a specialist company in wear particle analysis. The objective is to develop a system feasible for most industries to turn the process of particle classification more autonomous and faster. The results demonstrate that our proposed system could classify particles considering their shape in a reliable and autonomous way. | en |
dc.description.provenance | Made available in DSpace on 2019-09-12T16:57:08Z (GMT). No. of bitstreams: 0 Previous issue date: 2017 | en |
dc.language | Inglês | pt_BR |
dc.publisher | Ieee | - |
dc.publisher.country | Estados Unidos | pt_BR |
dc.relation.ispartof | 2017 17th International Conference on Control, Automation and Systems (Iccas) | - |
dc.relation.ispartofseries | International Conference on Control Automation and Systems | - |
dc.relation.haspart | 17th International Conference on Control, Automation and Systems (ICCAS) | - |
dc.rights | Em verificação | pt_BR |
dc.source | Web of Science | pt_BR |
dc.subject.other | Industrial Oil | en |
dc.subject.other | Wear Particle Analysis | en |
dc.subject.other | Neural Networks | en |
dc.subject.other | Kohonen | en |
dc.subject.other | Computer Vision | en |
dc.subject.other | Neural-Network | en |
dc.subject.other | Classification | en |
dc.title | Clustering Wear Particle Using Computer Vision and Self-Organizing Maps | en |
dc.type | Trabalho apresentado em evento | pt_BR |
dc.identifier.wos | WOS:000426974400004 | - |
dc.description.affiliation | [Ramos, Marcos Alessandro C.; Leme, Bruno Cesar C.] Universidade de Taubaté (Unitau), Dept Mech Engn | - |
dc.description.affiliation | [de Almeida, Luis Fernando; Bizarria, Jose Walter P.] Universidade de Taubaté (Unitau), Dept Informat | - |
dc.description.affiliation | [Bizarria, Francisco Carlos P.] Universidade de Taubaté (Unitau), Dept Elect Engn | - |
dc.subject.wosarea | Automation & Control Systems | en |
dc.subject.researcharea | Automation & Control Systems | en |
Appears in Collections: | Trabalhos Apresentados em Eventos Artigos de Periódicos |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.