Please use this identifier to cite or link to this item: http://repositorio.unitau.br/jspui/handle/20.500.11874/3081
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRamos, Marcos Alessandro da Cruzpt_BR
dc.contributor.authorLeme, Bruno Cesar Caixetapt_BR
dc.contributor.authorAlmeida, Luis Fernando dept_BR
dc.contributor.authorBizarria, Francisco Carlos Parquetpt_BR
dc.contributor.authorBizarria, José Walter Parquetpt_BR
dc.date.accessioned2019-09-12T16:57:08Z-
dc.date.available2019-09-12T16:57:08Z-
dc.date.issued2017-
dc.citation.spage4-
dc.citation.epage8-
dc.identifier.isbn978-89-93215-14-4-
dc.identifier.issn2093-7121-
dc.identifier.urihttp://repositorio.unitau.br/jspui/handle/20.500.11874/3081-
dc.description.abstractThis work presents the implementation of a method for classification of wear particle contaminant present in industrial oil by using image processing and neural networks. It is based on morphological data obtained from a computer vision system and employs Self-Organizing Maps to classify particles' features intro different wear debris groups. The dataset used for training the neural network and further validation of the results was gathered using reports provided by a specialist company in wear particle analysis. The objective is to develop a system feasible for most industries to turn the process of particle classification more autonomous and faster. The results demonstrate that our proposed system could classify particles considering their shape in a reliable and autonomous way.en
dc.description.provenanceMade available in DSpace on 2019-09-12T16:57:08Z (GMT). No. of bitstreams: 0 Previous issue date: 2017en
dc.languageInglêspt_BR
dc.publisherIeee-
dc.publisher.countryEstados Unidospt_BR
dc.relation.ispartof2017 17th International Conference on Control, Automation and Systems (Iccas)-
dc.relation.ispartofseriesInternational Conference on Control Automation and Systems-
dc.relation.haspart17th International Conference on Control, Automation and Systems (ICCAS)-
dc.rightsEm verificaçãopt_BR
dc.sourceWeb of Sciencept_BR
dc.subject.otherIndustrial Oilen
dc.subject.otherWear Particle Analysisen
dc.subject.otherNeural Networksen
dc.subject.otherKohonenen
dc.subject.otherComputer Visionen
dc.subject.otherNeural-Networken
dc.subject.otherClassificationen
dc.titleClustering Wear Particle Using Computer Vision and Self-Organizing Mapsen
dc.typeTrabalho apresentado em eventopt_BR
dc.identifier.wosWOS:000426974400004-
dc.description.affiliation[Ramos, Marcos Alessandro C.; Leme, Bruno Cesar C.] Universidade de Taubaté (Unitau), Dept Mech Engn-
dc.description.affiliation[de Almeida, Luis Fernando; Bizarria, Jose Walter P.] Universidade de Taubaté (Unitau), Dept Informat-
dc.description.affiliation[Bizarria, Francisco Carlos P.] Universidade de Taubaté (Unitau), Dept Elect Engn-
dc.subject.wosareaAutomation & Control Systemsen
dc.subject.researchareaAutomation & Control Systemsen
Appears in Collections:Trabalhos Apresentados em Eventos
Artigos de Periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.